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Summary 

The paper presents application of a non-linear method (energy operator) to monitor the operation of a plain 

bearing. The possibility of using the energy operator to evaluate the energy of a simulated mechanical system 

was analysed. Then, an experiment was conducted in the laboratory environment which involved observation 

of oil vortexes. This allowed to show the possibility of using the energy operator as a descriptor of operating 

state of a hydrodynamic bearing. 
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ZASTOSOWANIE OPERATORA ENERGETYCZNEGO TEAGER-KAISERA DO DETEKCJI 

NIESTABILNOŚCI ŁOŻYSKA ŚLIZGOWEGO 
 

Streszczenie 

W artykule zaprezentowano użycie metody analizy nieliniowej jaką jest operator energetyczny w celu 

monitorowania pracy łożyska ślizgowego. Przeanalizowano możliwość użycia operatora energetycznego w 

celu oceny energii symulowanego układu mechanicznego. Potwierdziło to zależność pomiędzy energią w 

ujęciu newtonowski a wartością operatora energetycznego. Następnie przeprowadzono eksperyment na 

stanowisku laboratoryjnym polegający na obserwowaniu powstawania drgań olejowych. Pozwoliło to wskazać 

na możliwość stosowania operatora energetycznego jako deskryptora stanu pracy łożyska hydrodynamicznego. 

   

Słowa kluczowe: Kaiser, Teager, TKEO, operator energetyczny, smarowanie hydrodynamiczne, łożyska ślizgowe, 

stabilność, analiza nieliniowa  

 

1. DIAGNOSTICS OF NON-LINEAR 

SYSTEMS  

 

Diagnostics of technical systems requires an 

analysis of non-linear issues. Although many 

machines can be described with a linear model, non-

linear disturbance can occur during their operation. 

Such disturbance can be caused by wear or a variable 

character of operation. There are however many 

objects which cannot be correctly described with a 

linear model. One of them is a hydrodynamic bearing. 

Despite a lot of research in many scientific centres, 

the complexity of physical phenomena occurring in a 

hydrodynamic bearing causes an unceasing interest of 

the researchers. The proposed mathematical models 

of hydrodynamic bearings allow to accurately foresee 

their operation, but many parameters have to be 

determined and entered.  The development of 

parameters and the simulation itself  are time-

consuming  [1]. The diversity of bearing designs 

results in development of new numerical models 

[2,3]. Use of water as a lubricant allows to observe 

the complexity of impact of water technological 

parameters on the stable operation of the bearing. The 

operation of a hydrodynamic bearing can also be 

disturbed by oil vortexes the development physics of 

which has not  been identified sufficiently [4].  As the 

simulations of operation of hydrodynamic bearings 

are complex and time-consuming, it is necessary to 

search for effective methods to analyse diagnostic 

signals based on non-linear analysis. New lubricants 

are additional difficulty in the analysis of the 

hydrodynamic bearing behaviour. Due to 

environmental considerations, there is an increasing 

requirement  to use lubricants which are not 

hazardous in case of an accidental release to the 

environment. Difficult control of technological 

parameters of, for example, water causes 

unpredictable changes of lubricant film thickness [5]. 

The paper compares the similarities of energy 

operator to total energy of an object in order to check 

the possibility of using the energy operator as a 

descriptor of correct bearing operation. The 

considerations are theoretical, and in the final part 

they were verified on a dedicated laboratory test 

stand.  

 

2. ENERGY OPERATOR 

 

The energy operator was introduced in 1983 in a 

paper by  Hubert M. Teager and Shushan M. Teager 

[6]. The authors emphasized a few applications of the 
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operator (including speech analysis), but did not 

explain the theory. The paper by J. F. Kaiser [7] 

introduced an algorithm to calculate the energy 

operator and gave theoretical background for a  

continuous signal and a discrete form for a periodic 

signal. Currently the Teager-Kaiser operator, also 

called the Kaiser operator, has a wide 

application[13,14].  

The energy operator was successfully used in 

research on a helicopter bearing [8]. An important 

advantage of the method was ability to operate on raw 

signal which allowed to analyse the whole frequency 

band without the need of band-pass filtration. The 

interest in the energy operator in diagnostics is also 

noted in research on gearboxes used in wind turbines 

[9]. The gearbox operates in conditions of varying 

load and temperature. The research showed that the 

diagnostics technique using the energy operator is as 

effective as the traditional technique based on Hilbert 

transform.  

There are many ways to give a definition of the 

energy operator. The aforementioned paper by the 

Teagers presented only the diagrams of the operator. 

The energy operator can be compared to total energy 

of an object in the Newtonian sense. It is a sum of 

potential and kinetic energy of an object. Further in 

the paper a relationship is presented between the 

energy operator and the basic mechanical models, 

including the bearing model. In case of a simple 

system with single degree of freedom, the total 

mechanical energy is the sum: 

 E =
1

2
kx2 +

1

2
mv2 (2.1) 

where E is total energy, k – stiffness coefficient, x – 

displacement, m – mass, v – velocity.  

Examining the energy of natural vibration of a 

system with single degree of freedom which equation 

of motion is  

𝑚 �̈� + 𝑘𝑥 = 0 (2.2) 

where �̈� is the second derivative of displacement-

acceleration. The solution is the function 

x= Acos(ωt+ φ)  (2.3) 

where A is amplitude, ω=√(k/m)  – frequency, t – 

time, φ – any phase. The total mechanical energy of 

the system according to (2.1)  is equal to: 

𝐸 =
1

2
𝑚ω2𝐴2  (2.4) 

Equation 2.3 indicates that the object energy is 

proportional to the half of the quotient of amplitude 

squared and the angular frequency squared. 

The energy operator is defined in the continuous 

form as [5,7]: 

Ψ(x(t)) = �̇�2(t) − x(t)�̈�(t) (2.5) 

Where �̇� is the derivative of displacement- velocity 

which for systems with single degree of freedom, and 

thus for sinusoidal signal x(t)=Acos(ωt), takes the 

form: 

Ψ(x(t)) = (−Aω sin(ωt))2 – 

Acos(ωt)(−ω2Acos(ωt))= 
(2.6) 

= A2ω2(sin2(ωt) + cos2(ωt)) = (2.7) 

= A2ω2 (2.8) 

Comparing the relationships 2.4 and 2.8 one can 

see the similarity of energy operator to the total 

energy of an object in the Newtonian sense for a 

simple system described by the equation of motion 

2.2. Both relationships are a function of the quotient 

of amplitude and frequency squared. In addition, the 

energy equation 2.4 depends on elasticity constant 

which is invariable for majority of systems. 

 

2.1. Natural vibration of  a system with single 

degree of freedom 

When we consider a system with single degree of 

freedom described by the equation of motion 2.2, we 

obtain the solution 2.3. Figure 1 presents the 

waveform of displacement, energy and energy 

operator for a naturally vibrating system with single 

degree of freedom for parameters:  m=1, k=1. In line 

with expectations, the system with constant energy 

has a constant value of energy and energy operator 

during the simulation.  

Fig. 1. Diagrams of displacement, energy and energy 

operator for  a naturally vibrating system with single 
degree of freedom for parameters:  m=1, k=1, initial 

conditions: x=1, �̇�=0 
 

A discrete form of the energy operator can be derived 

for many systems. For example for the system 

described by equation 2.2, the energy operator can 

take a discrete form: 

Ψ[x[n]] = x2
[n] − x[n − 1]x[n + 1] (2.9) 

assuming that the signal is periodic: 

xn = Acos(Ωn + φ). (2.10) 

then: 
xn = Acos(Ωn + φ). (2.11) 

xn−1 =A cos(Ω(n − 1) + φ) (2.12) 

xn+1 =A cos(Ω(n + 1) + φ) (2.13) 

Where Ω = 2πf /Fs , and Fs sampling frequency. 

From trigonometrical identities: 

cos(α + β) cos(α − β) = 
1

2
 [cos(2α) + 

cos(2β)] 
(2.14) 

cos(2α) =2 cos2(α) – 1 = 1 − 2 sin2(α) (2.15) 

we obtain equality: 

xn−1xn+1 = A2 cos2(Ωn + φ) − A2 sin2(Ω) (2.16) 
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substituting to equation 2.9 we obtain: 

x2
n − xn−1xn+1 =A2 sin2(Ω) (2.17) 

This relationship is correct assuming that Ω is 

positive and less than π/2. In practical applications, Ω 

cannot exceed ¼ of sampling frequency. Relationship 

2.17 can be approximated also for small values of Ω 

so that sin(Ω) = Ω. For Ω< π/2 the approximation 

error does not exceed 11.2%. The advantage of 

discrete form is ability to track the energy operator on 

a current basis using a small computational capacity 

[10]. 

 

2.2. Energy operator for damped vibration 

While analysing the behaviour of energy operator 

for damped systems we used a model of a system with 

natural vibration damped linearly  

𝑚 �̈� + 𝑐�̇� + 𝑘𝑥 = 0 2.18 

and natural vibration damped non-linearly which is a 

simple model of plain bearing:  

�̈� + ω2𝑥 − 2ℎ�̇� − 𝛽�̇�3 = 0 2.19 

where h,c – parameters related to damping 

coefficient: 
𝑐

𝑚
=2h, β – parameter related to damping 

coefficient. For naturally damped vibration described 

by equation of motion 2.18 the solution can be 

described by equation:  

x(t) =  A𝑒−ℎ𝑡cos((𝜆t +  𝛷) 2.20 

where 𝜆 – vibration type parameter, 𝜆2 = 𝜔2 − ℎ2. It 

is a solution of equation 2.18 for a subcritical 

dampening. For solution 2.19, energy according to 

formula 1.1 is: 

𝐸 =  
1

2
𝐴2(e−ht)

2

(cos(𝜆𝑡 + 𝛷)2 ℎ2𝑚

+ 2 h𝜆𝑚 cos(𝜆𝑡
+ 𝛷) sin(𝜆𝑡 + 𝛷)
+ sin(𝜆𝑡 + 𝛷)2 𝜆2𝑚
+ 𝑘 cos(𝜆𝑡 + 𝛷)2 ) 

2.21 

The energy operator according to formula 2.4 

takes the form: 

Ψ(x(t))  = 𝐴2(𝑒−ℎ𝑡)2𝜆2(cos(𝜆𝑡 + 𝛷)2 +

sin (𝜆𝑡 + 𝛷)2 )= A2(e−ht)
2

λ2 
2.22 

The behaviour of such system was analysed. 

Figure 2 presents the equation of motion of the 

system, its energy and energy operator for 

parameters: m=2, k=4, c=1. Analysing the behaviour 

of the system, we can see that the vibration amplitude 

constantly decreases. In the energy vs. time diagram 

we can see the change of energy dissipation during 

motion. When the velocity is zero according to 

equation 2.18, the energy is constant. The diagram of 

energy operator defined by formula 2.22 has a similar 

character to the function of amplitude drop Ae−ht.  

The character of non-linear vibration described by 

equation of motion 2.19 for parameters m=3, k=3, 

c=1, 𝛽 = 1 is presented in Figure 3. Parameter 

𝛽 impacts the oscillation amplitude; when 𝛽 = 0 we 

obtain the equation for a system with vibration 

dampened linearly.  When 𝛽 > 0 the vibration decay 

quicker, when 𝛽 < 0 the vibration decay slower. 

Application of the operator allows to observe one 

parameter representing displacement, velocity or 

acceleration which can be essential in detection of 

formation of a hydrodynamic instability in the 

bearing. Exceeding the displacement limit value can 

mean self-excited vibration, and increase of 

acceleration or velocity can mean occurrence of oil 

vortexes.  

Fig. 2. Diagrams of displacement, energy and energy 

operator for  a vibrating system with linear dampening, 

with single degree of freedom, described by equation 2.18  

for parameters: m=2, k=4, c=1, initial conditions: x=1, 

�̇�=0 

 
Fig. 3. Diagrams of displacement, energy and energy 

operator for  a vibrating system with non-linear 

dampening, with single degree of freedom, described by 

equation 2.19  for parameters m=3, k=3, c=1, 𝜷 = 𝟏, 

initial conditions: x=1, �̇�=0 

3. TESTS  
 

Tests were conducted in order to verify the 

effectiveness of using the Teager-Kaiser energy 

operator in the diagnostics of hydrodynamic states of 

a plain bearing. The inference was conducted on the 

basis of results of experiments on a simulated and a 
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real object. The correct operation and occurrence of 

oil vortexes was recorded on the real object. This 

allowed to determine the value of energy operator 

depending on the hydrodynamic state of the bearing.  

 

3.1. Simulation tests of a non-linear object 

The simulation tests were performed in order to 

determine the possibility of applying the energy 

operator to diagnose the hydrodynamic state of the 

plain bearing. The following equation was used: 

where 2h, 𝛽 – parameters related to damping 

coefficient, k – stiffness coefficient, x – displacement. 

The equation 3.1 was taken from literature [11]. It 

allows to describe the behaviour of a non-linear 

object and it can model the dampening which occurs 

in plain bearings. The stability of the system was 

considered in the Lyapunovian sense in order to 

analyse the system behaviour. The system 3.1 has 

three singularities (0,0), ( −√
𝑘

2ℎ
, 0), (√

𝑘

2ℎ
, 0).  The 

first of them is stable, and the remaining two are 

unstable. The diagram of phase trajectories with 

marked  singularities is presented in Figure 4. It 

illustrates all possible states of the system. The 

system can feature instability which tries to increase 

the displacement and velocity (quadrant II) or 

instability which reduces the displacement and 

velocity (quadrant III). It is important for the research 

because the energy coefficient defined as a difference 

of velocity squared and the quotient of displacement 

and acceleration (equation 2.5) is sensitive to the 

change of sign. The change of positive value of 

position or acceleration to negative can cause an 

abrupt increase of the energy coefficient. The energy 

coefficient can be negative when the value of quotient 

of displacement and acceleration is greater than the 

value of velocity. The change of sign can cause 

difficulties in an unambiguous evaluation of the 

change of energy operator. 

In order to test the possibility of applying the 

energy operator as an instability predictor, the 

coefficients were chosen in such a manner as to make 

the instability develop in two possible directions. The 

first instability development option was analysed for 

the system described by equation 3.1 with parameters 

2h=0.2, 𝛽=0.274, k=1, m=1. The second instability 

development option was analysed for the system 

described by equation 3.1 with parameters 2h=0.2, 

𝛽=0.28, k=1, m=1.  The phase trajectory diagram was 

plotted and the system analysis was carried out until 

the root of sum of squares exceeded value 5 in order 

to show the occurrence of instability.  

When the limit of velocity limit value is exceeded, 

a dangerous state occurs which can lead to the bearing 

failure. The displacement, energy, and the Teager-

Kaiser energy operator waveforms are presented in 

Figures 6 and 7. In both cases the sign of energy 

operator changes from positive to negative. This 

results from a sharp increase of acceleration absolute 

value which is included in the definition of energy 

operator. This is related to the simulation conditions; 

the equation is solved until the instability increases 

significantly. Occurrence of instability can be 

however unambiguously detected before the energy 

operator sign changes. The instability occurring in 

Figures 6 and 7 can be seen in the energy diagram and 

the energy operator diagram before the sign changes. 

It is characterized by amplitude increasing a few 

times. The displacement diagram does not allow to 

detect instability.  

 
Fig. 4. Phase trajectory for the system described by 

equation 3.1. The shaded area represents local stability 

 

The simulation instability tests indicate that the 

Teager-Kaiser energy operator responds before the 

phase trajectory goes beyond the stable operation 

area. This allows to detection a hydrodynamic 

instability before it occurs, and this it gives more time 

to react and prevent the occurrence. The advantage 

of the energy operator analysis over the system 

energy analysis is  that the former does not require 

the knowledge of the system parameters such as 

dampening, elasticity and mass.  

The tests stand presented in Figure 8 comprises a 

motor with speed control. The motor is connected via 

a coupling to a shaft with rolling bearings on both 

ends. In the middle of the shaft is the tested plain 

bearing with two eddy-current sensors. These sensors 

detect distance which allows to directly plot shaft axis 

trajectory (orbit, shaft centre trajectory). The laser 

tachometer measures the shaft rotational speed. The 

lubricant is delivered to the bearing from the tank and 

is returned there; it is a closed lubricant circuit. The 

signal from the tachometer and eddy-current sensors 

is recorded by means of a measurement card with the 

4200 Hz sampling frequency. The recorded data are 

analysed in proprietary software which allows to 

remove the runout phenomenon, plot the shaft axis 

trajectory, and determine the value of the Teager-

Kaiser energy operator according to formula 2.5.  

�̈�+kx +2h�̇�- 𝛽 �̇�3 = 0, k>0, 2h>0,  𝛽 

>0 

3.1 
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Fig. 5. Phase trajectories for vibration of systems with single degree of freedom described by equation 3.1; left-
hand diagram: 2h=0.2, β =0.274, k=1, m=1, initial conditions: x=1, x& =0; right-hand diagram: 2h=0.2, β =0.28, 

k=1, m=1 initial conditions: x=1, x& =0 

Fig. 6. Diagrams of displacement, energy and energy 
operator for a system with single degree of freedom 

described by equation 3.1 for: 2h=0.2, β =0.274, 
k=1, m=1, initial conditions: x=1, x& =0 

 

 
Fig. 7. Diagrams of displacement, energy and 

energy operator for a system with single 
degree of freedom described by equation 3.1 

for: 2h=0.2, β =0.28, k=1, m=1, initial 
conditions: x=1, x& =0 

 

 
Fig. 8. Test stand, 1- motor with speed control, 2-tachometer, 3-coupling, 4,10- rolling bearing, 5-shaft, 6-plain 

bearing, 7-bearing loading system, 8-lubricant delivery and removal valves, 9- eddy-current sensors, 12- lubricant 
tank 
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3.2. Experiments on laboratory test stand 
During the experiment the stand was loaded with 

the force of 140 N in the horizontal plane by the 
bearing loading system (6). This corresponds to the 
shaft deflection by 1mm. The lubricant was water; 
this required a bearing adapted to water lubrication. 
The choice was a bearing with rubber lining and 
longitudinal grooves.  

The experiment involved examining the 
trajectory of shaft rotation axis. The experiment was 
conducted at various speeds, from 300 to 6800 
RPM, in 500 RPM  increments. The recorded signal 
was analysed, allowing to diagnose the individual 
hydrodynamic states during the bearing operation.  
 
3.3. Identification of hydrodynamic states 

According to the literature [12], there are three 
hydrodynamic states in plain bearings: normal 
operation, small oil vortexes, large oil vortexes. 

These trajectories are plotted on the basis of two 
revolutions; 0° means the beginning of observation, 
360° is the shaft axis position after the first 
revolution, 720° is the shaft axis position after the 
second revolution. During normal operation there is 
one phase marker: 0° = 360° = 720°. There are two 
phase markers for small oil vortexes, and three for 
large oil vortexes.  

The purpose of measurements analysis was to 
find a method to detect a hydrodynamic instability. 
The reference was the diagram of trajectory of shaft 
rotation axis for two revolutions as a predictor of 
hydrodynamic state.  

Figures 10 and 11 present examples of trajectory 
diagrams obtained on the test stand in successive 
hydrodynamic states. The diagrams were plotted on 
the basis of measurements made on the stand at 5000 
RPM and 140 N load force. 

 
Fig. 9. Phase markers (0°start of revolutions, 360° one full revolution, 720° two full revolutions) as a diagnostic 

indicator of the bearing hydrodynamic state. I normal operation area, II area of small oil vortexes, III area of large 
oil vortexes 

 

 
Fig. 10. Displacement [um], orbit [um], and energy operators in two axes (x and y). Operating parameters: 5000 

RPM, 140 N load, lubricant: water. Stable trajectory; energy operator mean value:  2000 and 1600 (for axes x and 
y); energy operator amplitude: 1300 and 800 (for x and y) 

 
Fig. 11. Displacement [um], orbit [um], and energy operators in two axes (x and y). Operating parameters: 5000 
RPM, 140 N load, lubricant: water. Unstable trajectory, area of area of small oil vortexes; energy operator mean 

value:  2750 and 1520 (for axes x and y); energy operator amplitude: 2330 and 1400 (for x and y) 
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The diagrams shown in Figures 10 and 11 
present two hydrodynamic states (normal operation 
and small oil vortexes) of the bearing operation for 
the same operating parameters. The energy operator 
diagram shows a significant increase of vibration 
amplitude. This allows to say that monitoring the 
energy operator amplitude can be used to detect the 
hydrodynamic instability occurring in bearings. 
Unlike the simulations, the tests on the real objects 
allowed to see a problem relating to the energy 
operator oscillation. The amplitude and mean were 
used to describe the energy operator behaviour.  
 
4. CONCLUSION  
 

The paper consists of three parts: analytical, 
simulation and experimental on the laboratory test 
stand. Observation of energy operator behaviour 
during the simulation and the experiment indicated a 
significant increase of the energy operator 
amplitude in case of occurrence of small oil 
vortexes. The oil vortexes were identified by means 
of phase markers on the trajectory diagram. The 
trajectory corresponding to oil vortexes has a 
different signal variability dynamics which is a 
direct cause of increased energy operator amplitude. 

An experiment was also conducted which 
involved observation of large oil vortexes. When the 
load was intentionally reduced, there was a 
dangerous state of large-amplitude shaft vibration, 
typical for bearings under a low load. Although such 
vibration did not result in a change of trajectory or 
increase of the number of phase markers, it 
significantly increased the energy operator mean 
value which can be linked with the diameter of 
trajectory of the centre of shaft rotation axis. The 
increased energy operator amplitude in this case is 
directly related to the reduction of lubricant film 
thickness which increases the shaft displacement.  
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